Sparse coded spatial pyramid matching and multi-kernel integrated SVM for non-linear scene classification

Author:

Gajjar Bhavinkumar1,Mewada Hiren2,Patani Ashwin1

Affiliation:

1. Department of Electronics and Communication Engineering , Indus University , Rancharda, Ahmedabad, 382115 , India

2. Department of Electrical Engineering , Prince Mohammad Bin Fahd University , PO Box 1664, Al Khobar 31952 , Saudi Arabia

Abstract

Abstract Support vector machine (SVM) techniques and deep learning have been prevalent in object classification for many years. However, deep learning is computation-intensive and can require a long training time. SVM is significantly faster than Convolution Neural Network (CNN). However, the SVM has limited its applications in the mid-size dataset as it requires proper tuning. Recently the parameterization of multiple kernels has shown greater flexibility in the characterization of the dataset. Therefore, this paper proposes a sparse coded multi-scale approach to reduce training complexity and tuning of SVM using a non-linear fusion of kernels for large class natural scene classification. The optimum features are obtained by parameterizing the dictionary, Scale Invariant Feature Transform (SIFT) parameters, and fusion of multiple kernels. Experiments were conducted on a large dataset to examine the multi-kernel space capability to find distinct features for better classification. The proposed approach founds to be promising than the linear multi-kernel SVM approaches achieving 91.12 % maximum accuracy.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Kernel Separable Mixed ConvNet for Remote Sensing Scene Classification;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3