Affiliation:
1. Tchaikovsky Branch “Perm National Research Polytechnic Institute”, Federal State Budgetary Institution of Science, “Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences“, Institute of Mechanics
2. Silesian University of Technology
Abstract
Abstract
Losses of drilling mud and other fluids is the one of the major types of drilling troubles. Annual time losses for their elimination by oil and gas companies are huge. The factors, influencing the mud losses and regulating the direction of the further works, can be divided into two groups: geological and technological. Conducted studies on the use of an insulating composition based on chromium acetate made it possible to identify: the use of the insulation composition on the chrome acetate base allows considerable reduction of time required to eliminate disastrous circulation loss without installation of cement plugs; avoiding BHA replacement; avoiding drilling-in after bullheading and overlapping of lost-circulation layer; low cost, possibility of fast preparation, as it does not entail the delivery of additional chemicals, which also contributes to reduction of time required to eliminate disastrous circulation loss; the use with every type of drilling mud. Basing on the positive experience of the use of this composition in the neighboring regions and considering its economic side, the technique can be used in regions of the Udmurt Republic.
Subject
Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Information Systems
Reference29 articles.
1. [1] O.V. Savenok, L.V. Povarova, G.V. Kusov “Application of superdeep drilling technology for study of the earth crust”. IOP Conference Series: Earth and Environmental Science. 2020. C. 052066.
2. [2] L. Moroz, A. Uhrynovskyi, V. Popovych, B. Busko, G. Kogut “Effectiveness research of physical and chemical methods appfication for oil recovery enhancing using the asp for the strutynsky oil field conditions”. Management Systems in Production Engineering, 2020, Vol. 28, Issue 2, pp. 104-111. doi: 10.2478/mspe-2020-0016
3. [3] V.A. Afanasyev “Optimization of well assemblies and well pump equipment of dual completion”. Engineering Practice, no 2, p. 36, 2012.
4. [4] M.N. Baranov, P. Božek, V. Prajová, T.N. Ivanova, D.N. Novokshonov, A.I. Korshunov. “Constructing and calculating of multistage sucker rod string according to reduced stress”. Acta Montanistica Slovaca, vol. 22, no. 2, pp. 107-115, 2017.
5. [5] A. Dzhus, R. Rachkevych, A. Andrusyak, I. Rachkevych, O. Hryhoruk, S. Kasatkin “Evaluation the stress-strain state of pumping equipment in the curvilinear sections of the wells”. Management Systems in Production Engineering, 2020, Vol. 28, Issue 3, pp. 189-195 doi: 10.2478/mspe-2020-0028.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献