Mechanical Spark Electrostatic Property Testing Method

Author:

Kędzierski PrzemysławORCID

Abstract

Abstract The article describes an attempt to assess the electrostatic properties of mechanical friction-induced sparking. Such sparks are the cause of numerous accidents in hard coal mines. The article summarizes accidents in hard coal mining in Poland in recent years. In most cases, the initials were mechanical sparks. Mechanical sparks contain energy, a part of which is related to their excess electrostatic charge, whereas the other part is of a different origin (kinetic or thermal energy, for example). The article tries to estimate how much of this energy is energy impact generated by electrostatics impact. It is hard to measure the dynamic electrostatic parameters like electric charge. Authors select four measuring methods. This test methods are prepared based on authors knowledge of electrostatic parameters and European standards dedicated to measure the electrostatics parameters. These circuits were prepared for four different spark parameters. Measurement methods of electrostatic field of sparks stream are not able to measure field potential of sparks. The measuring instruments do not have such a fast response time, adequate to the speed of the sparks. Spark generation and parameter measurement experiments were performed. The only method to determine the amount of electrostatic charge on sparks is to measure the entire charge by collecting sparks at the measuring electrode. The measuring system requires that the entire stream of sparks falls on the electrode. Tested transferred electrostatic charge of stream of sparks is about 10 nC. It means that this charge can be an effective ignition source for some explosive atmospheres. Electrostatic charge with Certain methods were rejected as inadequate following result analysis. A claim for one of the methods was submitted to the Patent Office of the Republic of Poland.

Publisher

Walter de Gruyter GmbH

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3