Affiliation:
1. VSB-Technical University of Ostrava
2. Divize Důlní Hydraulika , HENNLICH s.r.o.
Abstract
Abstract
The paper describes the structural design of a laboratory device that allows for presenting operation, simulating work procedures and checking functionality of the elevator “rope sensors” when equalizing different tensile forces in partial ropes of a rope system of traction elevators. The laboratory device is modified for checking operations of commonly used rope sensors. In an overwhelming number of cases, elevator technicians use them for setting up the unequally distributed tensile forces in elevator ropes. The device is equipped with three, mutually attached pulleys, over which the rope is installed. The unknown tensile force in the rope is determined by an “indirect method”, i.e. from the resultant of the forces of the rope bent over the pulleys, which have an effect on the force sensor. The tensile force along the rope axis can be determined numerically, but also experimentally, from the inclination angle of the rope installed on the pulleys, diameter of the pulleys, diameter of the rope and the force detected by the force sensor of the stretched rope. The paper presents experimentally obtained tensile force values at the rope sensor, deduced from stretching the rope. The paper also describes the procedure for determining the measured load in the rope by rope sensors of the SWR, SWK and RMT-1 types based on the variable axial force in the rope.
Subject
Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献