Investigation of Workload Control Methods for Shops with Re-Entrant Flows

Author:

Prabhu Aruna1ORCID,Raghunandana K1ORCID,Yogesh Pai P1ORCID,Barboza Augustine B.V.1ORCID

Affiliation:

1. Manipal Academy of Higher Education

Abstract

Abstract The re-entrant flow with an unpredictable nature of arrival would apparently harm production plans and schedules in flow type of shops. The re-entrant flow with varied arrival frequencies in rotor blade manufacturing is quite complicated and results in disproportionate workloads. Hence, an attempt has been made to study the significant influence of disproportionate workloads and research on an innovative order release method to enhance performance. The manufacturing process was observed thoroughly to incorporate the uncertain events that cause disturbance in the production. A simulation model was developed on a discrete event simulation platform by analysing problem phenomena right from the conceptualization phase. The model has been verified and validated to ensure the accuracy. The model was subjected to 288 experiments representing different scenarios that a flow shop undergoes in reality. The factors considered in the experimentation were re-entrant frequency, re-entrant proportions, order release methods and priority dispatching rules. A refined load release policy for disproportionate loads has been proposed to judge its effectiveness in terms of profit computation by comparing it with other relevant policies. Results of the experiment revealed that the order release methods contribute 95.93% to throughput performance, in addition, the use of the new re-entrant method policy in the above scenario was productive in improving the overall shop performance.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3