Machine Learning for Proactive Supply Chain Risk Management: Predicting Delays and Enhancing Operational Efficiency

Author:

Rezki Nisrine1,Mansouri Mohamed1

Affiliation:

1. 1 National School of Applied Sciences Berrechid , Hassan First University , Morocco

Abstract

Abstract Supply chain (SC) efficacy and efficiency can be severely hampered by supplier delays in orders, especially in the fast-paced business environment of today. Effective risk reduction necessitates the identification of suppliers who are prone to delays and the precise prediction of future interruption. Accurately predicting availability dates is therefore a key factor in successfully executing logistics operations. By leveraging machine learning (ML) techniques, organizations can proactively identify high-risk suppliers, anticipate delays, and implement proactive measures to minimize their impact on manufacturing processes and overall SC performance. This study explores and utilizes various regression and classification ML algorithms to predict future delayed delivery, determine the status of order deliveries, and classify suppliers according to their delivery performance. The employed models include K-Nearest Neighbors (KNN) Random Forest (RF) Classifier and Regression, Gradient Boosting (GB) Regression and Classifier, Linear Regression (LR), Decision Trees(DT) Classifier and Regression, Logistic Regression and Support Vector Machine (SVM) Based on real data, our experiments and evaluation metrics including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) demonstrate that the ensemble based regression algorithms (RF Regression and GB Regression) provide the best generalization error and outperforms all other regression models tested. Similarly, Logistic regression and GB Classifier outperforms other classification algorithms according to precision, recall, and F1-score metrics. The knowledge obtained from this study could aid in the proactive identification of high-risk suppliers and the application of proactive actions to increase resilience in the face of unanticipated disruptions, in addition to increasing SC efficiency and decreasing manufacturing disturbances.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3