Pollutants Removal Efficiency in the Hydroponic Lagoon of the Wastewater Treatment Plant

Author:

Jakubaszek Anita

Abstract

Wastewater treatment in semi-natural systems, such as a hydroponic lagoon operating as the third stage of treatment, is becoming more and more popular because of the efficiency of organic matter and nutrient removal. The article presents an analysis of the efficiency of pollutant removal at the mechanical-biological wastewater treatment plant in Gronów with a capacity of Q<sub>d</sub> = 1125m<sup>3</sup>/day and a load of 9375 PE. The wastewater treatment plant operates on the basis of activated sludge and biomass settling technology on submerged flow beds. The treatment plant is characterized by a very high variability of wastewater inflow during the year due to periodic inflow of wastewater from tourist resorts in Łagów. The average efficiency of removing pollutants from wastewater was: BOD<sub>5</sub> - 98.5%, COD - 92.8%, total suspended solids - 93.2%, total nitrogen - 86.1% and total phosphorus - 69.5%. The study showed that the use of a hydroponic lagoon in the technological system improved the efficiency of wastewater treatment by 1.7% for BOD<sub>5</sub>, 0.9% - COD, total suspended solids by 4.3%, 6.4% for total nitrogen and total phosphorus- 3.3%.

Publisher

University of Zielona Góra, Poland

Subject

General Medicine

Reference14 articles.

1. Jaromin-Gleń, K et al. 2015. Effect of “Hajdow” wastewater treatment plant modernization on wastewater treatment process. Ecol. Chem. Eng. A. 22(3), 297-311.

2. Lenart-Boroń, A, Bojarczuk, A, Jelonkiewicz, Ł and Żelazny, M 2019. The effect of a Sewage Treatment Plant modernization on changes in the microbiological and physicochemical quality of water in the receiver. Archives of Environmental Protection Vol. 45 no. 2, 37–49.

3. Bawiec, A and Pawęska, K 2020. Changes in the granulometric composition of particles in wastewater flowing through a hydroponic lagoon used as the third stage in a wastewater treatment plant. Water Science &Technology 81(9), 1863.

4. Cai, W, Zhao, Z, Li, D, Lei, Z, Zhang, Z and Lee, DJ 2019. Algae granulation for nutrients uptake and algae harvesting during wastewater treatment. Chemosphere 214, 55–59.

5. Jin, Z, Zhang, X, Li, J, Yang, F, Kong, D, Wei, R, Huang, K and Zhou, B 2017. Impact of wastewater treatment plant effluent on an urban river. Journal of Freshwater Ecology 32(1), 697–710.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3