Affiliation:
1. Cracow University of Technology
Abstract
Abstract
The paper presents the problem of optimal shaping of the H-bar cross-section of a steel arch that ensures minimal mass. Nineteen combinations of nine basic load states are considered simultaneously in the problem formulation. The optimal shaping task is formulated as a control theory problem within the formal structure of the maximum Pontriagin’s principle. Since the ranges of constraint activity defining the control structure are a priori unknown and must be determined numerically, assuming the proper control structure plays a key role in the task solution. The main achievement of the present work is the determination of a solution of the multi-decision and multi-constraint optimization problem of the arch constituting a primary structural system of the existing building assuring the reduction of the structure mass up to 42%. In addition, the impact of the assumed state constraint value on the solution structure is examined.
Reference31 articles.
1. 1. Allen, E and Zalewski, W 2009. Form and Forces: Designing Efficient, Expressive Structures. Hoboken:John Wiley \& Sons, Incorporated.
2. 2. Bessini, J, Shepherd, P, Monleón, S and Lázaro, C 2020. Design of bending-active tied arches by using a multi-objective optimization method. Structures. 27. 2319–2328.10.1016/j.istruc.2020.07.045
3. 3. EN 1991-1-1: Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC].
4. 4. Fiore, A, Marano, GC, Greco, R and Mastromarino, E 2016. Structural optimization of hollow-section steel trusses by differential evolution algorithm. Int. J. Steel Struct 16(2). 411–423.10.1007/s13296-016-6013-1
5. 5. Hartl, RF, Sethi, SP and Vickson, RG 1995. A Survey of the Maximum Principles for Optimal Control Problems with State Constraints. SIAM Rev. 37 (2). 181–218.10.1137/1037043
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献