Aggregate Type Influence on Microstructural Behavior of Concrete Exposed to Elevated Temperature

Author:

Belkadi Ahmed Abderraouf1,Kessal Oussama1,Bensalem Sara2,Aggoun Salima3,Amouri Chahinez2,Khouadjia Mohamed Lyes Kamel2

Affiliation:

1. Department of Civil Engineering , Mohammed El-Bachir Ibrahimi University of Bordj Bou Arreridj , Algeria

2. Laboratory of Materials and durability of constructions(lMdc) , university Mentouri of Constantine , Algeria

3. L2MGC, Cergy-Pontoise University , F95000 Cergy-Pontoise , Paris , France

Abstract

Abstract Exposure of concrete to high temperatures affects its mechanical properties by reducing the compressive strength, bending… etc. Factors reducing these properties have been focused on by several studies over the years, producing conflicting results. This article interested an important factor, that is the type of aggregates. For this, an experimental study on the behavior of concrete based on different types of aggregates: calcareous, siliceous and silico-calcareous subjected to high temperatures. In addition, the particle size distribution of the aggregates was chosen to be almost identical so that the latter does not affect the behavior of the concrete. Aggregates and concrete samples were subjected to a heating/cooling cycle of 300, 600 and 800 °C at a speed of 1 °C/ min. The mechanical and physical properties of concrete before and after exposure to high temperatures were studied. In addition, a microstructural study using a scanning electron microscope and a mercury porosimeter was performed. Thus, a comparative study between various researches on the mechanical properties of concrete exposed to high temperatures containing different types of aggregates was carried out. The compressive strength test results showed that the concrete based on siliceous aggregates (C-S) has better mechanical performance up to 300 ° C. However, above 300°C, the compressive strength decreases faster compared to calcareous-based concrete (C-C). According to the mercury porosimeter test, at 600 ° C, C-SC and C-S concretes have the highest number of pores compared to C-C concretes. The microstructure of concrete at high temperatures was influenced mainly by the aggregate’s types and the paste-aggregate transition zone. This study reinforces the importance of standardizing test procedures related to the properties of concrete in a fire situation so that all the results obtained are reproducible and applicable in other research.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3