Health risk assessment in the vicinity of a copper smelter: particulate matter collected on a spider web

Author:

Trzyna Agnieszka1ORCID,Rybak Justyna1ORCID,Bartz Wojciech2ORCID,Górka Maciej2ORCID

Affiliation:

1. Faculty of Environmental Engineering , Wrocław University of Science and Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław , Poland

2. Faculty of Earth Science and Environmental Management , University of Wrocław , Cybulskiego 32, 50-205 Wrocław , Poland

Abstract

Abstract We used spider webs as a particulate matter (PM) sampler to assess the possible health risk to the inhabitants of Legnica city (Poland). We aimed to find out if it is a useful material and could provide reliable information. We selected two spider families (Agelenidae and Linyphiidae) whose webs structure enhances the PM accumulation. The collected particles were analysed using a Scanning Electron Microscope equipped with Energy Dispersive X-Ray (SEM-EDX) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) which provided morphological and chemical information and allowed to indicate possible sources of pollution. The results showed that PM10, the fraction of particles smaller than 10 µm, was dominated by the particles of natural origin, while fine fractions were composed of diverse anthropogenic particles, whose origin can be connected with the activity of the copper smelter and in smaller quantity with the road traffic. The carcinogenic and non-carcinogenic health risk was assessed for these pathways: inhalation, ingestion, and dermal, for children and adults. The non-carcinogenic risk was very high (Hazard Index: HI > 1) both for children (Cu, Ni, Pb, Cd) and adults (Cu, As, Pb, Cd). Moreover, high carcinogenic risk (>10-4) was found in most of the sampling points. The study shows that spider webs are useful in biomonitoring of PM and can also be used for health risk assessment. In the studied region, it was found that the possible negative impact of air pollution on human health exists.

Publisher

Walter de Gruyter GmbH

Subject

Geochemistry and Petrology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3