New synthetic [LREE (LREE = La, Ce, Pr, Sm), Pb]-phosphate phases

Author:

Staszel Kacper1ORCID,Jędras Anna1ORCID,Skalny Mateusz1ORCID,Dziewiątka Klaudia1ORCID,Urbański Kamil1,Sordyl Julia12ORCID,Rybka Karolina13ORCID,Manecki Maciej1ORCID

Affiliation:

1. 1 AGH University of Kraków; Faculty of Geology, Geophysics and Environmental Protection; Department of Mineralogy, Petrography and Geochemistry , al. Mickiewicza 30 , Kraków , Poland

2. 2 Department of Earth Sciences, Uppsala University , Villavägen 16 , Uppsala , Sweden

3. 3 Institute of Geological Sciences, Polish Academy of Sciences , Senacka 1 , Kraków , Poland

Abstract

Abstract Search for inexpensive and efficient methods of critical raw materials recovery is of great importance across the world due to growing demand for green technologies. Formation and detailed characterization of new Pb- and Light Rare Earth Elements (LREE)-containing phosphates, compared to already described Pb- or LREE-containing phosphates, was described in this work. These phases were precipitated at experimental conditions similar to these used in a newly proposed coprecipitation route for REE recovery from aqueous solutions. The formation of La, Ce, Pr and Sm phosphates from aqueous solutions proceeded differently in the presence of Pb than in its absence. No rhabdophane group minerals, (REE,Ca,Th)(PO4nH2O were formed, which were the product of crystallization in the absence of Pb, as evidenced by the PXRD analysis of the control LREE phosphates. Instead, a new, distinct phase was formed, which is neither a ‘phosphoschultenite’, PbHPO4, with La, Ce, Pr or Sm substitution nor a rhabdophane with Pb substitution. This showed that PbHPO4 structure did not accept isomorphic substitutions of LREE elements and rhabdophane structures are reluctant to accept Pb substitutions. At the same time, the formation of a hitherto unknown crystalline phase was found to be a mixed (LREE,Pb)-phosphate. A lower pH caused higher crystallinity of phases, as confirmed by SEM and PXRD. FTIR spectroscopy showed the hydrous nature of the obtained phases, which was additionally confirmed by thermal analysis. Decreasing pH of the reaction solution resulted in a higher crystalline water content. Moreover, La-bearing phases contained more chemically bound water than other phases. A combined EDS analysis and ICP-OES led to the chemical composition of new Pb phases with La, Ce, Pr and Sm that can be expressed as La2Pb3(PO4)4·3.5H2O, Ce2Pb3(PO4)4·3.3H2O, Pr2Pb3(PO4)4·3.1H2O and Sm2Pb3(PO4)4·3.3H2O, respectively. These results give a better understanding of potential novel recovery pathways of REE from phosphate mineral sources or wastes.

Publisher

Walter de Gruyter GmbH

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3