Johnson–Schumacher Split-Plot Design Modelling of Rice Yield

Author:

David I. J.1,Asiribo O. E.2,Dikko H. G.3,Ikwuoche P. O.1

Affiliation:

1. 1 Department of Mathematics and Statistics , Federal University Wukari , Nigeria

2. 2 Department of Statistics , Federal University of Agriculture , Abeokuta , Nigeria

3. 3 Department of Statistics , Ahmadu Bello University , Zaria , Nigeria

Abstract

Summary In this research, an intrinsically nonlinear split-plot design model (INSPDM) is formulated and studied. It was formulated by fitting a Johnson–Schumacher (JS) function to the split-plot model mean function. The fitted model parameters are estimated using the estimated generalized least squares (EGLS) technique based on a Gauss–Newton procedure with Taylor series expansion, by minimizing the objective function of the model. The variance components for the whole plot and subplot random effects are estimated using restricted maximum likelihood estimation (REML) techniques. The adequacy of the fitted INSPDM was tested using four median adequacy measures: resistant coefficient of determination, resistant prediction coefficient of determination, the resistant modeling efficiency statistic, and the median square error prediction statistic based on the residuals of the fitted model. Akaike’s Information Criterion (AIC), Corrected Akaike’s Information Criterion (AICC) and Bayesian Information Criterion (BIC) statistics are used to select the best parameter estimation technique. The results obtained are compared with the techniques of ordinary least squares (OLS) and EGLS via maximum likelihood estimation (MLE). The results showed the model to be adequate, reliable, stable, and a good fit based on EGLS-REML when compared with OLS and EGLS-MLE fitted model parameter estimates.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3