Classification methods in the diagnosis of breast cancer

Author:

Ogłoszka Anna Magdalena1,Smaga Łukasz1

Affiliation:

1. Faculty of Mathematics and Computer Science , Adam Mickiewicz University , Uniwersytetu Poznańskiego 4 , Poznań , Poland

Abstract

Summary This paper concerns the problem of diagnosing the type of cancer with the use of machine learning and statistical methods. Nowadays, the problem of neoplasms, in particular breast cancer, is one of humanity's greatest challenges. The identification of cancer and its type is extremely important. In solving this problem, classification methods can be used as objective tools that may be helpful for doctors making a diagnosis. For this reason, we discuss many efficient classifiers in the context of cancer detection. In addition, we consider the topic of data set transformations to deal with the problem of data unbalance, as well as measures of classification quality. In the experimental part, an attempt will be made to find the best classifier and to improve the quality of the original data set to obtain the highest values of classification quality measures for a particular data set.

Publisher

Walter de Gruyter GmbH

Reference26 articles.

1. Agresti A., Kateri M. (2021): Foundations of Statistics for Data Scientists: With R and Python. CRC Press.10.1201/9781003159834

2. Bennett K.P. (1992): Decision tree construction via linear programming. Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, 97–101.

3. Bennett K.P., Mangasarian O.L. (1992): Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software 1: 23–34.10.1080/10556789208805504

4. Breast Cancer Wisconsin Data Set https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+\%28original\%29 [accessed: 21.10.2022].

5. Breiman L. (2001): Random forests. Machine Learning 45: 5–32.10.1023/A:1010933404324

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3