Comparative evaluation of goodness of fit tests for normal distribution using simulation and empirical data

Author:

Anastasiou Achilleas1,Karagrigoriou Alex1,Katsileros Anastasios2

Affiliation:

1. Department of Statistics and Actuarial-Financial Mathematics, Laboratory of Statistics and Data Analysis , University of the Aegean

2. Department of Crop Science, Laboratory of Plant Breeding and Biometry , Agriculture University of Athens

Abstract

Summary The normal distribution is considered to be one of the most important distributions, with numerous applications in various fields, including the field of agricultural sciences. The purpose of this study is to evaluate the most popular normality tests, comparing the performance in terms of the size (type I error) and the power against a large spectrum of distributions with simulations for various sample sizes and significance levels, as well as through empirical data from agricultural experiments. The simulation results show that the power of all normality tests is low for small sample size, but as the sample size increases, the power increases as well. Also, the results show that the Shapiro–Wilk test is powerful over a wide range of alternative distributions and sample sizes and especially in asymmetric distributions. Moreover the D’Agostino–Pearson Omnibus test is powerful for small sample sizes against symmetric alternative distributions, while the same is true for the Kurtosis test for moderate and large sample sizes.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Selection for Electricity Power Forecasting of Solar Power Plants;2023 3rd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3