Simulated Surface Electromyographic (SEMG) Signal Generation and Detection Model

Author:

Messaoudi Noureddine12,Belkacem Samia13,Bekka Rais El’hadi4

Affiliation:

1. University of Boumerdes , Faculty of Technology, Department Electrical Systems Engineering , Boumerdes , Algeria

2. University of Boumerdes, Faculty of Technology , LIST Laboratory , Boumerdes , Algeria

3. University of Boumerdes , Faculty of Sciences, LIMOSE Laboratory , Boumerdes , Algeria

4. University of Sétif 1, Faculty of Technology , Department of Electronics, LIS Laboratory , Sétif , Algeria

Abstract

Abstract For didactic purposes, the aim of this work was to improve a simulation model of surface electromyographic (sEMG) signal by taking into consideration the shortcomings of previously developed models. This model started with the simulation of the single fibre action potential (SFAP), then the model of the single motor unit action potential (MUAP), afterwards the imitation of the train of MUAP and finally the modellig of the resultant sEMG signal which is the sum of the MUAPs trains. SFAP simulation was based on: i) the description of the volume conductor model which is composed of four layers (bone, muscle, fat and skin), ii) the description of the electrodes shapes and sizes as well as spatial filters, iii) and the transmebrane current. The proposed model shows its effectiveness in the possibility of carrying out practical work by simulation on the modelling of SFAP, MUAP, MUAPT and the sEMG signal. The most important result of this model is that signal processing tools can be applied to analyze and interpret real-world phenomena such as the effects of physiological, non physiological and sensing system parameters on the shape of the simulated sEMG signal.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3