Tribological Behaviour of Cross-Shaped Dimples on Sliding Surfaces Under Hydrodynamic Lubrication

Author:

Gangadia Hardik1ORCID,Sheth Saurin2ORCID

Affiliation:

1. Research Scholar, Gujarat Technological University , Ahmedabad , Gujarat , India

2. Mechatronic Engineering Department , G. H. Patel College of Engineering & Technology , V. V. Nagar , Gujarat , India

Abstract

Abstract This study reports on the tribological behaviour of sliding surfaces having cross-shaped micro-dimples on a surface. One wall is smooth and moving at a constant speed against the other fixed wall with dimples. The laser machine helps to create the desired dimples on the surface of the fixed wall. For the purpose of generating hydrodynamic pressure and tribological behaviour, the effects of cross-shaped dimples and oriented cross-shaped dimples have been compared with circular-shaped dimples. Additionally, the impact of sliding speed, dimple area density and depth on tribological behaviour was examined. The findings show that compared with a circular-shaped dimple, an unconventional cross-shaped and orientated cross-shaped dimple generates a higher net hydrodynamic pressure in the fluid domain and offers superior stability between the sliding surfaces. It has been demonstrated that geometrical factors like dimple depth and area density as well as operational factors like sliding speed have a substantial impact on the hydrodynamic average pressure and tribological behaviour of sliding surfaces. The experimental findings indicate that, for the same geometric and operating parameters, cross- and orientated cross-shaped dimples have a 20%–25% lower friction coefficient between the sliding surfaces than circular dimples. The results of the experiment support those of the analysis and CFD.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3