Application of Convolutional Gated Recurrent Units U-Net for Distinguishing between Retinitis Pigmentosa and Cone–Rod Dystrophy

Author:

Skublewska-Paszkowska Maria1ORCID,Powroznik Pawel1ORCID,Rejdak Robert2ORCID,Nowomiejska Katarzyna2ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, Department of Computer Science , Lublin University of Technology , Nadbystrzycka 38D , Lublin , Poland

2. Faculty of Medicine, Chair and Department of General and Pediatric Ophthalmology , Medical University of Lublin , Chmielna 1 , , Lublin , Poland

Abstract

Abstract Artificial Intelligence (AI) has gained a prominent role in the medical industry. The rapid development of the computer science field has caused AI to become a meaningful part of modern healthcare. Image-based analysis involving neural networks is a very important part of eye diagnoses. In this study, a new approach using Convolutional Gated Recurrent Units (GRU) U-Net was proposed for the classifying healthy cases and cases with retinitis pigmentosa (RP) and cone–rod dystrophy (CORD). The basis for the classification was the location of pigmentary changes within the retina and fundus autofluorescence (FAF) pattern, as the posterior pole or the periphery of the retina may be affected. The dataset, gathered in the Chair and Department of General and Pediatric Ophthalmology of Medical University in Lublin, consisted of 230 ultra-widefield pseudocolour (UWFP) and ultra-widefield FAF images, obtained using the Optos 200TX device (Optos PLC). The data were divided into three categories: healthy subjects (50 images), patients with CORD (48 images) and patients with RP (132 images). For applying deep learning classification, which rely on a large amount of data, the dataset was artificially enlarged using augmentation involving image manipulations. The final dataset contained 744 images. The proposed Convolutional GRU U-Net network was evaluated taking account of the following measures: accuracy, precision, sensitivity, specificity and F1. The proposed tool achieved high accuracy in a range of 91.00%–97.90%. The developed solution has a great potential in RP diagnoses as a supporting tool.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3