Partitioning evapotranspiration using stable isotopes and Lagrangian dispersion analysis in a small agricultural catchment

Author:

Hogan Patrick1,Parajka Juraj12,Heng Lee3,Strauss Peter4,Blöschl Günter12

Affiliation:

1. Centre for Water Resource Systems , TU Wien , Karlsplatz 13, 1040 Vienna , Austria .

2. Institute of Hydraulic Engineering and Water Resources Management , TU Wien , Karlsplatz 13/222, 1040 Vienna , Austria .

3. Soil and Water Management and Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA) , 1400 Vienna , Austria .

4. Institute for Land and Water Management Research, Federal Agency for Water Management , Pollnbergstrasse 1, 3252 Petzenkirchen , Austria .

Abstract

Abstract Measuring evaporation and transpiration at the field scale is complicated due to the heterogeneity of the environment, with point measurements requiring upscaling and field measurements such as eddy covariance measuring only the evapotranspiration. During the summer of 2014 an eddy covariance device was used to measure the evapotranspiration of a growing maize field at the HOAL catchment. The stable isotope technique and a Lagrangian near field theory (LNF) were then utilized to partition the evapotranspiration into evaporation and transpiration, using the concentration and isotopic ratio of water vapour within the canopy. The stable isotope estimates of the daily averages of the fraction of evapotranspiration (Ft) ranged from 43.0–88.5%, with an average value of 67.5%, while with the LNF method, Ft was found to range from 52.3–91.5% with an average value of 73.5%. Two different parameterizations for the turbulent statistics were used, with both giving similar R 2 values, 0.65 and 0.63 for the Raupach and Leuning parameterizations, with the Raupach version performing slightly better. The stable isotope method demonstrated itself to be a more robust method, returning larger amounts of useable data, however this is limited by the requirement of much more additional data.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3