Sand dune vegetation-biocrust interaction as a source of spatial heterogeneity

Author:

Yizhaq Hezi1,Ashkenazy Yosef1

Affiliation:

1. Department of Solar Energy and Environmental Physics , BIDR, Ben-Gurion University , Sede Boqer Campus, 84990 , Israel .

Abstract

Abstract Vegetation and biocrust play crucial roles in dune stability and mobility, and their interaction can lead to bistability, temporal oscillations, and hysteresis. We studied a two-dimensional (2D) mathematical model of vegetation and biogenic crust cover dynamics on sand dunes. Under a certain parameter range, the space-independent version of the model exhibited the bi-stability of an oscillatory state and a steady state, and we studied the 2D dynamics of the model under these parameters. The patterns developed by the 2D model showed a high degree of spatial heterogeneity and complexity depending on the initial conditions and on the state type across the front. The results suggest that spatial heterogeneity and complexity can evolve from the intrinsic dynamics between vegetation and biocrust, even without natural geodiversity and spatiotemporal climate fluctuations. In the real world, these two types of intrinsic and extrinsic heterogeneity processes interact such that it is difficult to distinguish between them.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3