Temporal and spatial patterns of the river flow and water temperature relations in Poland

Author:

Wrzesiński Dariusz1,Graf Renata1

Affiliation:

1. Adam Mickiewicz University in Poznań , Institute of Physical Geography and Environmental Planning, Department of Hydrology and Water Management , Bogumiła Krygowskiego 10 , Poznań , Poland .

Abstract

Abstract Main aim of the study was to determine the temporal and spatial patterns of relations between monthly and annual average river flow (RF) and water temperature (WT) for 53 rivers in Poland. The research made use of monthly and annual WT and RF for 88 water gauges for the period 1971–2015. Correlations were established using the Spearman’s rank correlation coefficient and the similarity of RF–WT relations was determined using the Ward’s hierarchical grouping. It was demonstrated that correlations between average annual RF and WT were negative (for >85% of water gauges) and statistically significant (p<0.05) only for 30% of water gauges. It was confirmed that the studied RF–WT relations underwent seasonal changes. Positive correlations were clearly predominant in the winter months, while from April to September these relations were negative and statistically significant. The RF–WT relations were also characterized by spatial differences and this had been confirmed by separation of seven groups of water gauge profiles distinguished with the help of the Ward’s hierarchical grouping method. The strongest RF–WT relations were apparent in the case of mountainous rivers, for which snow melt supply and summer rainfall supply were predominant, and lakeland rivers, which had a considerable share of groundwater supply. These were classified as cold rivers, as opposed to the cool rivers in the lowland belt, for which the RF–WT relations were the weakest. The results obtained may contribute to the elaboration of an appropriate management strategy for river ecosystems, which are assigned important economic and environmental functions.

Publisher

Walter de Gruyter GmbH

Reference112 articles.

1. Adynkiewicz-Piragas, M., 2008. Compensation actions for negative impact of hydrotechnical structures on the river ecosystem. Infrastruktura i ekologia terenów wiejskich, 9, 7–18. (In Polish.)

2. Allan, J.D., Castillo, M.M., 2007. Stream Ecology: Structure and Function of Running Waters. 2nd ed. Chapman and Hall, New York, 436 p.

3. Augustyn, L., 2010. The influence of the Czorsztyn-Niedzica and Sromowce Wyżne hydroelectric power station on the ichthyofauna of the Dunajec River in the Pieniny region. Pieniny – Zapora – Zmiany - Monografie Pienińskie, 2, 227–239. (In Polish.)

4. Bartholow, J.M., 1989. Stream temperature investigations: field and analytic methods. U.S. Fish and Wildlife Service, In-stream Flow Information, paper no. 13, Biological Report 89 (17). U.S. Department of the Interior Fish and Wildlife Service Research and Development, Washington, 139 p.

5. Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P., 2008. Climate Change and Water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat. Intergovernmental Panel on Climate Change, Geneva, 210 p.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3