Stepwise prediction of runoff using proxy data in a small agricultural catchment
Author:
Széles Borbála1, Parajka Juraj1, Hogan Patrick1, Silasari Rasmiaditya1, Pavlin Lovrenc1, Strauss Peter2, Blöschl Günter1
Affiliation:
1. Institute of Hydraulic Engineering and Water Resources Management , Vienna University of Technology , Karlsplatz 13/222, 1040 Vienna , Austria . 2. Federal Agency of Water Management, Institute for Land and Water Management Research , Pollnbergstraße 1, 3252 Petzenkirchen , Austria .
Abstract
Abstract
In this study, the value of proxy data was explored for calibrating a conceptual hydrologic model for small ungauged basins, i.e. ungauged in terms of runoff. The study site was a 66 ha Austrian experimental catchment dominated by agricultural land use, the Hydrological Open Air Laboratory (HOAL). The three modules of a conceptual, lumped hydrologic model (snow, soil moisture accounting and runoff generation) were calibrated step-by-step using only proxy data, and no runoff observations. Using this stepwise approach, the relative runoff volume errors in the calibration and first and second validation periods were –0.04, 0.19 and 0.17, and the monthly Pearson correlation coefficients were 0.88, 0.71 and 0.64, respectively. By using proxy data, the simulation of state variables improved compared to model calibration in one step using only runoff data. Using snow and soil moisture information for model calibration, the runoff model performance was comparable to the scenario when the model was calibrated using only runoff data. While the runoff simulation performance using only proxy data did not considerably improve compared to a scenario when the model was calibrated on runoff data, the more accurately simulated state variables imply that the process consistency improved.
Publisher
Walter de Gruyter GmbH
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology
Reference48 articles.
1. Ardia, D., Ospina Arango, J.D., Giraldo Gomez, N.D., 2010a. Jump-diffusion calibration using differential evolution. Wilmott Magazine, 55, 76–79.10.1002/wilm.10034 2. Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B.G., 2010b. Differential evolution with ‘DEoptim’: An application to non-convex portfolio optimization. The R Journal, 3, 1, 27–34.10.32614/RJ-2011-005 3. Ardia, D., Mullen, K.M., Peterson, B.G., Ulrich, J., 2016. ‘DE-optim’: Differential evolution in ‘R’. version 2.2-4. 4. Avanzi, F., Maurer, T., Glaser, S.D., Bales, R.C., Conklin, M.H., 2020. Information content of spatially distributed ground-based measurements for hydrologic-parameter calibration in mixed rain-snow mountain headwaters. Journal of Hydrology, 582, 124478.10.1016/j.jhydrol.2019.124478 5. Baroni, G., Schalge, B., Rakovec, O., Kumar, R., Schüler, L., Samaniego, L., Simmer, C., Attinger, S., 2019. A comprehensive distributed hydrological modeling intercomparison to support process representation and data collection strategies. Water Resources Research, 55, 990–1010.10.1029/2018WR023941
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|