The role of stony soils in hillslope and catchment runoff formation

Author:

Mujtaba Babar1,Hlaváčiková Hana2,Danko Michal3,de Lima João L.M.P.1,Holko Ladislav3

Affiliation:

1. MARE - Marine and Environmental Sciences Centre, Department of Civil Engineering, Faculty of Science and Technology , Pólo II-Universidade de Coimbra , Rua Luís Reis Santos, 3030-788 Coimbra , Portugal .

2. Slovak Hydrometeorological Institute , Jeséniova 17, 833 15 Bratislava , Slovak Republic .

3. Institute of Hydrology of the Slovak Academy of Sciences , Dúbravská cesta 9, 841 04 Bratislava , Slovak Republic .

Abstract

Abstract The role of stony soils in runoff response of mountain catchments is rarely studied. We have compared simulated response of stony soils with measured catchment runoff for events caused by rains of small and high intensities in the mountain catchment of the Jalovecký Creek, Slovakia. The soil water response was simulated for three sites with stoniness 10–65% using the Hydrus-2D single porosity model. Soil hydraulic parameters employed in the modelling, i. e. the saturated hydraulic conductivity and parameters of the soil water retention curves, were obtained by two approaches, namely by the Representative Elementary Volume approach (REVa) and by the inverse modelling with Hydrus-1D model (IMa). The soil water outflow hydrographs simulated by Hydrus-2D were compared to catchment runoff hydrographs by analysing their skewness and peak times. Measured catchment runoff hydrographs were similar to simulated soil water outflow hydrographs for about a half of rainfall events. Interestingly, most of them were caused by rainfalls with small intensity (below 2.5 mm/10 min). The REV approach to derive soil hydraulic parameters for soil water outflow modelling provided more realistic shapes of soil water outflow hydrographs and peak times than the IMa approach.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3