Future changes in extreme precipitation in central Serbia
Author:
Erić Ranka1, Kadović Ratko1, Đurđević Vladimir2, Đukić Vesna1
Affiliation:
1. University in Belgrade , Faculty of Forestry , Kneza Višeslava 1, 11030 Belgrade , Serbia . 2. University of Belgrade , Faculty of Physics , Institute of Meteorology , Dobračina 16, 11000 Belgrade , Serbia .
Abstract
Abstract
This paper presents the results of a study focused on the projected changes in extreme precipitation during the 21st century in Central Serbia. The changes are investigated on the basis of historical and modelled data sets of daily precipitation. The historical observation data were recorded at 18 synoptic weather stations in Central Serbia and modelled data were extracted from the regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model) under the A1B scenario. The average number of days in a year with precipition ≥ 20, 30, 40 and 50 mm (R20, R30, R40 and R50), the share of daily precipitation above the 20, 30, 40 and 50 mm (P20, P30, P40, P50) in the total annual precipitation and the monthly distribution of these heavy daily precipitation are used as indices of changes in extreme precipitation. These indices, for the three periods 2011–2040, 2041–2070 and 2071–2100, are determined and compared with those obtained for the historical reference period 1961–1990. The results have shown that the main changes in extreme precipitation in Central Serbia will be in their spatial distribution, and the uncertainty of the occurrence of extreme events will decrease. In the future the increase will be more pronounced than the decrease of these indices. We strongly emphasize the benefit of this paper for both the prevention of natural disasters in the study area and for the improvement of the regional climate model.
Publisher
Walter de Gruyter GmbH
Reference36 articles.
1. Aktar, N., 2013. Impact of climate change on riverbank erosion. International Journal of Sciences: Basic and Applied Research (IJSBAR), 7, 1, 36–42. 2. Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J. Gleason, B., Klein Tank, A.M.G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D.B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., Vazquez-Aguirre, J.L., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109. https://doi.org/10.1029/2005JD006290 3. Bocheva, L., Gospodinov, I., Simeonov, P. Marinova, T., 2010.Climatological analysis of the synoptic situations causing torrential precipitation events in Bulgaria during the period 1961–2007. In: Global Environmental Change: Challenges to Science and Society in Southeastern Europe, pp. 97–108. 4. Cavicchia, L., Scoccimarro, E., Gualdi, S., Marson, P., Ahren, B., Berthou, S., Conte, D., Aquila, A., Drobinski, P., Đurđević, V., Dubois, C., Gallardo, C., Li, L., Oddo, P., Sanna, A., Torma, C., 2018. Mediterranean extreme precipitation: a multi-model assessment. Climate Dynamics, 51, 901–913. 5. Cooper, R., 2019. Projection of future precipitation extremes across the Bangkok Metropolitan Region. Heliyon, 5, E01678.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|