Flow resistance of emergent rigid vegetation in steady flow

Author:

Wang Jiangyu1,Liu Jinxin12,Sun Yining1,Li Ji3,Cao Zhixian1

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management , Wuhan University , Wuhan , China .

2. Changjiang Survey, Planning, Design and Research, Co., Ltd ., Wuhan , China .

3. Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering , Swansea University , Swansea SA1 8EN , UK .

Abstract

Abstract Enhanced understanding of flow resistance in open channels with emergent vegetation is essential for flood management and river ecosystem restoration. The presence of vegetation can significantly alter bed resistance, leading to a challenge in accurately predicting flow discharge, water levels, sediment transport, and bed deformation. Previous studies on vegetated flows have focused on vegetation resistance, on which the impact of vegetation has been ignored or poorly estimated. This study proposes a new analytical model, built upon the momentum conservation law, to predict flow resistance to vegetated zones in a plain bed without bed forms, explicitly quantifying bed resistance and vegetation resistance in a corollary manner. The proposed model is benchmarked against five typical sets of laboratory experiments. It is demonstrated that the present model using a modified logarithmic velocity distribution performs best, whereas that assuming a uniform velocity profile considerably overestimates the vegetation resistance and neglects the effect of vegetation on bed resistance. The ratio of bed resistance to the total resistance is shown to range between 5% and 40%, and it decreases with increasing vegetation density and decreases with water depth. Therefore, bed resistance cannot be ignored when modelling shallow water flow with sparsely distributed vegetation. It is also revealed that vegetation arrangements significantly affect flow resistance, and therefore a model incorporating the effect of vegetation arrangement performs better. Overall, the present model facilitates a viable and promising tool for quantifying flow resistance in emergent vegetated channels.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3