Managing soil organic matter through biochar application and varying levels of N fertilisation increases the rate of water-stable aggregates formation

Author:

Šimanský Vladimír1,Wójcik-Gront Elżbieta2,Buchkina Natalya3,Horák Ján4

Affiliation:

1. 1 Department of Soil Science, Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources , Slovak University of Agriculture , Nitra , Slovakia .

2. 2 Department of Biometry, Institute of Agriculture , Warsaw University of Life Sciences – SGGW , Nowoursynowska 159, 02–776 Warsaw , Poland .

3. 3 Department of Soil Physics, Physical Chemistry and Biophysics , Agrophysical Research Institute , , St. Petersburg , Russia .

4. 4 Institute of Landscape Engineering, Faculty of Horticulture and Landscape Engineering , Slovak University of Agriculture , Nitra , Slovakia .

Abstract

Abstract The formation of soil aggregates, including water-stable aggregates, is linked to soil organic matter (SOM). Biochar (B) is carbon-rich, which, in addition to storing carbon in a stable form for many years, has important benefits for soils and plants, but the mechanisms of soil structure formation after B and mineral fertiliser application are not sufficiently studied. For this reason, the study aimed to answer the following questions: How (1) the rate of B and (2) varying levels of nitrogen fertiliser (N) being applied to the soil affect the dynamics of soil aggregation due to the increase in the content of soil organic carbon, labile carbon in the bulk soil and in the content of water-stable aggregates (WSA) size-fractions. In 2014–2021, in Dolná Malanta (experimental site of Slovak University of Agriculture on silty loam Haplic Luvisol) during the growing seasons, soil samples were collected from all the B (0, 10 and 20 t ha–1) and N (0, 1st and 2nd level of N fertilisation) treatments. The results have shown that the highest values of many variables were associated with B20 treatment for all the N fertilisation levels. B compared to N more significantly affected the content of almost all the size-fractions of WSA. In all the treatments, the content of WSAma >5 mm, 5–3 mm, 3–2 mm and 1–0.5 mm in size was increasing over time – a yearly increase from 0.31 to 2.14% for 8-years. Based on the changes in the SOM content, WSA were divided into 3 groups: 1) Water-stable microaggregates (WSAmi < 0.25 mm), 2) Smaller size-fractions of water-stable macroaggregates (WSAma 1–0.25 mm), and 3) Medium and large fractions of WSAma (WSAma ≥1 mm).

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3