Analysis of the unsaturated hydraulic properties of rocks using multiple laboratory methods

Author:

Zhuang Luwen1,Hoerlle Fernanda O.2,Chen Hao1,Pontedeiro Elizabeth M.23,van Genuchten Martinus Th.34,Couto Paulo2,Qin Chao-Zhong5,Lin Kairong1

Affiliation:

1. Center for Water Resources and Environment , and Guangdong Key Laboratory of Marine Civil Engineering, School of Civil Engineering, Sun Yat-sen University , Guangzhou , China .

2. Department of Civil Engineering , LRAP , Federal University of Rio de Janeiro, UFRJ , Rio de Janeiro , Brazil .

3. Department of Earth Sciences , Utrecht University , Utrecht , Netherlands .

4. Department of Nuclear Engineering , LASME, Federal University of Rio de Janeiro, UFRJ , Rio de Janeiro , Brazil .

5. School of Resources and Safety Engineering , Chongqing University , Chongqing , China .

Abstract

Abstract Proper characterization of the unsaturated hydraulic properties in rocks is significant for predicting fluid flow in soil, hydrogeologic, and petroleum science and engineering problems. In this study, we contributed rigorous analysis of the unsaturated hydraulic properties of three reservoir rock samples (Berea Sandstone, Guelph Dolomite, and Indiana Limestone). An improved version of the standard evaporation method (HYPROP) was developed to cater specifically to rock samples. The improved HYPROP setup enables measurements of local water pressures within rock samples without disturbing the upper portion of the samples. The obtained results were compared with those obtained using the conventional pressure plate method and a state-of-the-art nuclear magnetic resonance (NMR) method. Observed data were analyzed in terms of four different unimodal and bimodal hydraulic functions. The HYPROP data were found to be relatively close to the pressure plate data of two carbonate rocks. The NMR-based data were reasonably consistent with the HYPROP data, with differences likely due in part to the fact that they were obtained using two different 5-cm long plugs taken from the same core. Heterogeneity along the rock cores from which the samples were taken could be a major reason for the observed differences, and hence should be considered in reservoir analyses.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3