Controls on event runoff coefficients and recession coefficients for different runoff generation mechanisms identified by three regression methods

Author:

Chen Xiaofei1,Parajka Juraj12,Széles Borbála1,Strauss Peter3,Blöschl Günter12

Affiliation:

1. TU Wien , Centre for Water Resource Systems , Karlsplatz 13, A-1040, Vienna , Austria . www.waterresources.at

2. TU Wien , Institute of Hydraulic Engineering and Water Resources Management , Karlsplatz 13, A-1040 Vienna , Austria .

3. Federal Agency for Water Management, Institute for Land and Water Management Research , A-3252 Petzenkirchen , Austria .

Abstract

Abstract The event runoff coefficient (Rc) and the recession coefficient (tc) are of theoretical importance for understanding catchment response and of practical importance in hydrological design. We analyse 57 event periods in the period 2013 to 2015 in the 66 ha Austrian Hydrological Open Air Laboratory (HOAL), where the seven subcatchments are stratified by runoff generation types into wetlands, tile drainage and natural drainage. Three machine learning algorithms (Random forest (RF), Gradient Boost Decision Tree (GBDT) and Support vector machine (SVM)) are used to estimate Rc and tc from 22 event based explanatory variables representing precipitation, soil moisture, groundwater level and season. The model performance of the SVM algorithm in estimating Rc and tc is generally higher than that of the other two methods, measured by the coefficient of determination R2 , and the performance for Rc is higher than that for tc. The relative importance of the explanatory variables for the predictions, assessed by a heatmap, suggests that Rc of the tile drainage systems is more strongly controlled by the weather conditions than by the catchment state, while the opposite is true for natural drainage systems. Overall, model performance strongly depends on the runoff generation type.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3