Experimental and numerical investigation of water-surface characteristics at crossing connected non-orthogonally to four flat channels

Author:

Jeong Yong-Wook1,Jeong Woochang2

Affiliation:

1. Department of Architecture , Sejong University , 209, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea .

2. Department of Civil Engineering , Kyungnam University , 7, Kyungnamdaehak-ro, Masanhappo-gu, Changwon, Republic of Korea .

Abstract

Abstract Most studies on the flood flow characteristics at a crossing focus on channels connected orthogonally or at right angle, but studies on non-orthogonally connected channels remain limited. In this study, hydraulic-model experiments and numerical simulations are performed to analyze the characteristics of the water-surface variation in and around a crossing connected non-orthogonally to four flat channels. Comparison of the measured and simulated water depth distributions in and around the crossing indicates that the results are in relatively good agreement. In the experiment where the angle between two upstream channels is 45°, the water flow pattern in and around the crossing corresponds approximately to Type I proposed by Mignot et al. (2008). However, it was found that there is no any flow type to correspond to the water flow pattern measured in the case of the angle of 135°. For analyzing the variation of the water depth in and around the crossing with inflow, numerical simulation is performed by setting the inflow ratio of the two inlet channels to one, three, and six, respectively.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3