Effect of water surface slope and friction slope on the value of the estimated Manning’s roughness coefficient in gravel-bed streams

Author:

Zwolenik Monika1,Michalec Bogusław1

Affiliation:

1. University of Agriculture in Kraków , Department of Water Engineering and Geotechnics , Al. A. Mickiewicza 24/28 Kraków , Poland .

Abstract

Abstract The aim of the study was to assess the possibility of using the empirical formulas to determine the roughness coefficient in gravel-bed streams, the bed slopes of which range from 0.006 to 0.047. Another aim was to determine the impact of taking into account the conditions of non-uniform flow on the application of these formulas and to develop the correlation relationships between the roughness coefficient and water surface slope and also between the roughness coefficient and friction slope in order to estimate the roughness coefficient n in gravel-bed streams. The studies were conducted in eight measuring sections of streams located in the Kraków-Częstochowa Upland, southern Poland. The roughness coefficient n 0 for these sections was calculated from the transformed Bernoulli equation based on the results of surveys and hydrometric measurements. The values of n 0 were compared with the calculation results obtained from fourteen empirical formulas presenting the roughness coefficient as a function of slope. The Lacey, Riggs, Bray and Sauer formulas were found to provide an approximate estimate of the n value, while the best roughness coefficient estimation results were obtained using the Riggs formula. It was also found that taking into account the non-uniform flow and using the friction slope in the formulas instead of the bed slope or water surface slope did not improve the estimated values of the roughness coefficient using the tested formulas. It was shown that the lack of differences in the RMSE and MAE error values calculated for the developed correlation equations between the roughness coefficient and the friction slope or with the water surface slope also indicate no influence of the assumed friction slope or water surface slope on the value of the estimated roughness coefficient.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3