Integral transforms for three-dimensional pumping in confined, leaky, and unconfined aquifers

Author:

Silva Elizeu Melo da12,Quaresma João N. N.13,Macêdo Emanuel N.13,Cotta Renato M.45

Affiliation:

1. Graduate Program in Natural Resources Engineering in the Amazon, PRODERNA/ITEC/UFPA , Universidade Federal do Pará , 66075-110, Belém, PA , Brazil .

2. School of Mining Engineering , UNIFESSPA, Universidade Federal do Sul e Sudeste do Pará , CEP 68505-080, Marabá, PA , Brazil .

3. School of Chemical Engineering, FEQ/ITEC/UFPA , Universidade Federal do Pará , 66075-110, Belém, PA , Brazil .

4. General Directorate of Nuclear and Technological Development, DGDNTM, Marinha do Brasil, Rio de Janeiro , RJ , Brazil .

5. Department of Mechanical Engineering , POLI & COPPE, CT, Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil .

Abstract

Abstract Analytical or hybrid numerical-analytical solutions based on the Generalized Integral Transform Technique (GITT) are obtained for the transient three-dimensional pumping problem of aquifers with a fully penetrating vertical well between two parallel streams. The problem formulation for confined and leaky aquifers allows for achieving exact analytical solutions through integral transforms, while the unconfined aquifer case introduces a fourth kind boundary condition which leads to a coupled transformed head ordinary differential system, that can be solved either analytically or numerically. A convergence analysis is performed to illustrate the consistency of the numerical results achieved for the head distribution, as well as for the related pumping rates. Results are obtained for selected cases and comparisons with literature results are performed. A solution verification confirms the agreement of the integral transform solutions with available simulations and provides additional confidence for the analysis of a few physical parameters that influence the hydrological behavior.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3