Continuous Monitoring of the Mining Activities, Restoration Vegetation Status and Solar Farm Growth in Coal Mine Region Using Remote Sensing Data

Author:

Adjiski Vancho1,Zubíček Václav2

Affiliation:

1. 1 Faculty of Natural and Technical Sciences , “Goce Delchev” University , Shtip , R. N. Macedonia

2. 2 Department of Mining Engineering and Safety , Faculty of Mining and Geology , VŠB-Technical University of Ostrava , Ostrava , Czech Republic

Abstract

Abstract Land reclamation of previously mined regions has been incorporated in the mining process as awareness of environmental protection has grown. In this study, we used the open-pit coal mine Oslomej in R. N. Macedonia to demonstrate the activities related to the monitoring process of the study area. We combined the Google Earth Engine (GEE) computing platform with the Landsat time-series data, Normalized Difference Vegetation Index (NDVI), Random Forest (RF) algorithm, and the LandTrendr algorithm to monitor the mining impacts, land reclamation, and the solar farm growth of the coalfield region between 1984 and 2021. The data from the sequential Landsat archive that was used to construct the spatiotemporal variability of the NDVI over the Oslomej mine site (1984-2021) and the pixel-based trajectories from the LandTrendr algorithm were used to achieve accurate measurements and analysis of vegetation disturbances. The different land use/land cover (LULC) classes herbaceous, water, mine, bare land, and solar farm in the Oslomej coalfield area were identified, and the effects of LULC changes on the mining environment were discussed. The RF classification algorithm was capable of separating these LULC classes with accuracies exceeding 90 %. We also validated our results using random sample points, field knowledge, imagery, and Google Earth. Our methodology, which is based on GEE, effectively captured information on mining, reclamation, and solar farm change, providing annual data (maps and change attributes) that can help local planners, policymakers, and environmentalists to better understand environmental influences connected to the ongoing conversion of the mining areas.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3