Simulation of Fatigue Crack Growth in Integrally Stiffened Panels Under the Constant Amplitude and Spectrum Loadin

Author:

Augustin Petr

Abstract

Simulation of Fatigue Crack Growth in Integrally Stiffened Panels Under the Constant Amplitude and Spectrum LoadinThe paper describes methodology of numerical simulation of fatigue crack growth and its application on integrally stiffened panels made of 2024-T351 aluminium alloy using high speed cutting technique. Presented approach for crack growth simulation starts by the calculation of stress intensity factor function from finite element results obtained using MSC. Patran/Nastran. Subsequent crack growth analysis is done in NASGRO and uses description of crack growth rates either by the Forman-Newman-de Koning relationship or by the table lookup form. Three crack growth models were applied for spectrum loading: non-interaction, Willenborg and Strip Yield model. Relatively large experimental program comprising both the constant amplitude and spectrum tests on integral panels and CCT specimens was undertaken at the Institute of Aerospace Engineering laboratory in order to acquire crack growth rate data and enable verification of simulations. First analyses and verification tests of panels were performed under the constant amplitude loading. For predictions of crack growth using the spectrum loading a load sequence representing service loading of the transport airplane wing was prepared. Applied load spectrum was measured on B737 airplane within the joint FAA/NASA collection program. The load sequence is composed of 10 flight types with different severity analogous to the standardized load sequence TWIST. Before application on the stiffened panels a calculation of crack growth under the spectrum loading was performed for simple CCT specimen geometry. The paper finally presents comparison of simulations of fatigue crack propagation in two-stringer stiffened panel under the spectrum loading with verification test carried out in the IAE lab. The work was performed within the scope of the 6th Framework Programme project DaToN - Innovative Fatigue and Damage Tolerance Methods for the Application of New Structural Concepts.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Civil and Structural Engineering

Reference14 articles.

1. NASGRO Reference Manual, Version 4.2. San Antonio: NASA Johnson Space Center, Southwest Research Institute.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3