Affiliation:
1. Air Force Institute of Technology , Warsaw , Poland
Abstract
Abstract
This article concerns the issue of thermal degradation process of fuels, important from the perspective of the operation of turbine engines, especially in the context of new fuels/bio-fuels and their implementation. The studies of the kerosene-based jet fuel (Jet A-1) and its blends with synthetic components manufactured according to HEFA and ATJ technology, were presented. Both technologies are currently approved by ASTM D7566 to produce components to be added to turbine fuels. Test rig investigations were carried out according to specific methodology which reflects the phenomena taking place in fuel systems of turbine engines. The mechanism of thermal degradation process was assessed on the basis of test results for selected properties, IR spectroscopy and calculation of activation energy. The results show that with the increase of the applied temperature there is an increment of the content of solid contaminants, water and acid for all tested fuels. Thermal degradation process is different for conventional jet fuel when compared to blends, but also semi-synthetic fuels distinguished by different thermal stability depending on a given manufacturing technology.
Subject
Mechanical Engineering,Ocean Engineering
Reference21 articles.
1. 1. Pawlak M., Kuźniar M.: Determination of emission of noxious compounds in exhaust gas from naval gas turbine on the basis of emission characteristics of aircraft engine (in Polish), Autobusy, No.12, pp. 345-350, 2017.
2. 2. GE, Building on a Marine Power Legacy, 2017.
3. 3. NATO Logistics Handbook, NATO Headquarters, Brussels, 2012.
4. 4. Giannini R.M., Martin C.J., Strucko R.: Single naval fuel at sea feasibility study – phase one. Naval Air Systems Command Fuels and Lubricants Division, NAVAIRSYSCOM Report 445/02-004, 2002.
5. 5. Cengiz D., Burak Z.: Environmental and Economical Assessment of Alternative Marine Fuels, Journal of Cleaner Production Vol. 113, No. 02, pp. 438-449, 2016.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献