netBaltic System – Heterogeneous Wireless Network for Maritime Communications

Author:

Hoeft Michał1,Gierłowski Krzysztof1,Rak Jacek1,Woźniak Józef1

Affiliation:

1. Gdańsk University of Technology , Poland

Abstract

Abstract In case of maritime communications, we observe a growing interest in deployment of multitask satellite-based solutions and development of new maritime-specific systems intended for improvements in safety of e-navigation. Analysis of different types of currently used maritime communication systems leads, however, to a conclusion that neither global and still very expensive satellite systems nor cheaper, but short-ranged transmission technologies can, on their own, fully meet the today’s expectations and quality requirements formulated for broadband maritime systems. This lack of reliable solutions, offering high throughput and ubiquitous availability of coverage to a wide audience at a relatively low price is one of the main barriers in a widespread implementation of e-navigation initiatives. This issue is addressed in the netBaltic project with the objective to design, deploy and validate in a real maritime environment a non-satellite wireless communication system enabling ship-to-ship and ship-to-shore information exchange via a multi-hop network composed of onshore base stations, maritime vessels and other transit elements such as buoys. In this paper, the idea of a heterogeneous wireless maritime system is presented. Details of the proposed netBaltic node architecture are described highlighting the solutions introduced in the project as a response to specific maritime communication requirements. Numerical results of communication area coverage are presented for four different scenarios utilizing different wireless transmission technologies. In particular, they indicate that when using appropriate wireless communication solutions, the number of vessels being able to connect to Internet is significantly increased as compared to traditional wireless systems (capable of one-hop communication) from 14% for short-range transmission technologies up to as high as 127% in case when relatively long-range transmission technologies are employed within the system.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Reference36 articles.

1. 1. IMO MSC 81/23/10. “Work Programme. Development of an e-Navigation strategy”, Submitted by Japan, Marshall Islands, the Netherlands, Norway, Singapore, the United Kingdom and the United States, International Maritime Organization, (2005)

2. 2. J. Rak: „Resilient routing in communication networks”, Springer (2015)

3. 3. K. S. Zaidi, V. Jeoti, A. Awang: „Wireless backhaul for broadband communication over sea” in Proc. IEEE 11th Malaysia International Conference on Comm., pp. 298–303 (2013)

4. 4. „Working Document toward a draft new Report Maritime Radiocommunication Systems and Requirements”. ITU RSG: IALA, e-NAV14-10.3.6 (2013)

5. 5. A. Nowicki, M. Janecki, L. Dzierzbicka-Głowacka, M. Darecki, P. Piotrowski: The use of satellite data in the operational 3d coupled ecosystem model of the Baltic Sea (3d cembs), POLISH MARITIME RESEARCH 1(89) vol. 23, pp. 20-24, (2016)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Cooperative Ship Identification for Coastal Zones Based on the Very High Frequency Data Exchange System;Journal of Marine Science and Engineering;2024-07-27

2. Development of GUI and Slot Booking System for Marine Vessel Charging;2023 7th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech);2023-12-18

3. A Novel Time Slot Structure for the High-speed Digital Maritime Communication Network;2023 9th International Conference on Computer and Communications (ICCC);2023-12-08

4. Wireless Local Area Network Technologies as Communication Solutions for Unmanned Surface Vehicles;Sensors;2022-01-15

5. Non-Satellite Broadband Maritime Communications for e-Navigation Services;IEEE Access;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3