Affiliation:
1. Gdańsk University of Technology , Poland
Abstract
Abstract
Like other means of transport, merchant ships face the problem of increasing requirements concerning the environment protection, which, among other issues, implies the reduction of fuel consumption by the ship. Here, the conventional approach which consists in making use of higher strength steels to decrease the mass of the ship hull can be complemented by the use of new steel structures of sandwich panel type. However, the lack of knowledge and experience concerning, among other issues, fatigue strength assessment of thin-walled sandwich structures makes their use limited. Untypical welds imply the need for individual approach to the fatigue analysis. The article presents the effect of numerical FEM modelling with the aid of two-dimensional (2D) and three-dimensional (3D) elements on the results of strain and stress distributions in the areas of toe and root notches of the analysed laser weld. The presented results of computer simulation reveal that modelling of strain and stress states in 2D (instead of full 3D) affects only the results in close vicinity of the notch, and the observed differences rapidly disappear at a distance of 0.05 mm from the bottom of the notch. The obtained results confirm the possibility of use of numerically effective 2D strain and stress state models for analysing the fatigue strength of laser weld according to local approach.
Subject
Mechanical Engineering,Ocean Engineering
Reference45 articles.
1. 1. UNCTAD, “Review of Maritime Transport 2016,” 2016.
2. 2. P. R. Cabezas and G. Kasoulides, “International Maritime Organization,” Int. J. Mar. Coast. Law, vol. 3, no. 3, pp. 235–245, 2004.
3. 3. T. W. P. Smith et al., “Third IMO Greenhouse Gas Study 2014,” 2014.
4. 4. IMO, “MARPOL Annex VI, Chapter 4,” 2011.
5. 5. IMO, “MEPC 69/21. Report of the Marine Environment Protection Committee on its sixty-ninth session,” 2016.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献