Evaluating Repeatability of RTK (GPS and Galileo/GPS) performance in the analysis of points located in areas with and without obstructions
Author:
Pırtı Atınç1, Yucel M. Ali2
Affiliation:
1. Department of Geomatic Engineering, Division of Surveying Techniques , Yildiz Technical University , 34220 Esenler, Istanbul – Turkiye 2. Department of Geomatics Engineering , Canakkale Onsekiz Mart University , Canakkale , Turkey
Abstract
Abstract
Galileo is Europe’s Global Navigation Satellite System (GNSS), which provides improved positioning and timing data with significant benefits for many European services and users. Galileo enables users to know their exact location with greater precision than other available systems. Access to the Galileo signal in the obstructed and unobstructed environment provides benefits and opportunities for work, thanks to the improved performance and accuracy. The use of a Galileo-enabled receiver increases the number of satellites in view significantly. When compared to the performance of single-constellation receivers, this significantly reduces the time required to obtain a position with centimetre-level accuracy. The results indicate the current Galileo constellation’s suitability for high-precision RTK applications, as well as improved availability, accuracy, reliability, and time-to-fix in the obstructed and unobstructed environments. The results of RTK GPS and RTK GPS/Galileo obtained at different times of the same day by using two reference points were compared. The results of this study illustrate that integrating RTK GPS system with Galileo is favorable for surveying applications (cm accuracy). This study shows that in surveying applications requiring centimetre accuracy, the RTK GPS/Galileo method can replace other survey methods (Total Station).
Publisher
Walter de Gruyter GmbH
Reference38 articles.
1. Andreas, H., Abidin, H. Z., Sarsito, D. A., and Pradipta, D. (2019). Study the capabilities of RTK Multi GNSS under forest canopy in regions of Indonesia. In E3S Web of Conferences, volume 94, page 01021. EDP Sciences.10.1051/e3sconf/20199401021 2. Angrisano, A., Gaglione, S., Gioia, C., Borio, D., and Fortuny-Guasch, J. (2013). Testing the test satellites: the Galileo IOV measurement accuracy. In 2013 International Conference on Localization and GNSS (ICL-GNSS), 25-27 June 2013, Turin, Italy, pages 1–6. IEEE, doi:10.1109/ICL-GNSS.2013.6577253.10.1109/ICL-GNSS.2013.6577253 3. Borio, D., Senni, T., and Fernández-Hernández, I. (2020). Galileo’s High Accuracy Service—Field experimentation of data dissemination schemes. Inside GNSS, 15(4). 4. Cai, C., He, C., Santerre, R., Pan, L., Cui, X., and Zhu, J. (2016). A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Survey Review, 48(349):287–295, doi:10.1179/1752270615Y.0000000032.10.1179/1752270615Y.0000000032 5. Cai, C., Luo, X., Liu, Z., and Xiao, Q. (2014). Galileo signal and positioning performance analysis based on four IOV satellites. The Journal of Navigation, 67(5):810–824, doi:10.1017/S037346331400023X.10.1017/S037346331400023X
|
|