Well-Posedness and Blow Up for IBVP for Semilinear Parabolic Equations and Numerical Methods

Author:

Matus P.12,Lemeshevsky S.1,Kandratsiuk A.3

Affiliation:

1. 1Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surganov Str., 220072 Minsk, Belarus.

2. 2Department of Mathematics, The John Paul II Catholic University of Lublin, Al. Raclawickie 14, 20-950 Lublin, Poland.

3. 3Belarusian State University, 4, Nezavisimosti Ave., 220030, Minsk, Belarus.

Abstract

Abstract We have studied the stability of finite-difference schemes approximating boundary value problems for parabolic equations with a nonlinear and nonmonotonic source of the power type. We have obtained simple sufficient input data conditions, in which the solution of the differential problem is globally stable for all 0 ≤ t ≤ +∞. It is shown that if these conditions fail, then the solution can blow up (go to infinity) in finite time. The lower bound of the blow up time has been determined. The stability of the solution of BVP for the nonlinear convection-diffusion equation has been investigated. In all cases, we used the method of energy inequalities based on the application of the Chaplygin comparison theorem for nonlinear differential equations, Bihari-type inequalities and their discrete analogs.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3