Author:
Popel Martin,Bojar Ondřej
Abstract
Abstract
This article describes our experiments in neural machine translation using the recent Tensor2Tensor framework and the Transformer sequence-to-sequence model (Vaswani et al., 2017). We examine some of the critical parameters that affect the final translation quality, memory usage, training stability and training time, concluding each experiment with a set of recommendations for fellow researchers. In addition to confirming the general mantra “more data and larger models”, we address scaling to multiple GPUs and provide practical tips for improved training regarding batch size, learning rate, warmup steps, maximum sentence length and checkpoint averaging. We hope that our observations will allow others to get better results given their particular hardware and data constraints.
Publisher
Charles University in Prague, Karolinum Press
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献