An Output Sensitivity Problem for a Class of Fractional Order Discrete-Time Linear Systems

Author:

Benfatah Youssef1ORCID,El Bhih Amine1ORCID,Rachik Mostafa1ORCID,Lafif Marouane1

Affiliation:

1. Faculty of Sciences Ben M’Sik, Department of Mathematics and Computer Science , Hassan II University , Casablanca, Sidi Othman BP 7955 , Morocco

Abstract

Abstract Consider the linear discrete-time fractional order systems with uncertainty on the initial state { Δ α x i + 1 = A x i + B u i , i 0 x 0 = τ 0 + τ 0 n , τ 0 Ω , y i = C x i , i 0 \left\{ {\matrix{{{\Delta ^\alpha }{x_{i + 1}} = A{x_i} + B{u_i},} \hfill & {i \ge 0} \hfill \cr {{x_0} = {\tau _0} + {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } }_0} \in {\mathbb{R}^n},} \hfill & {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } }_0} \in \Omega ,} \hfill \cr {{y_i} = C{x_{i,}}\,\,\,i \ge 0} \hfill & {} \hfill \cr } } \right. where A, B and C are appropriate matrices, x0 is the initial state, yi is the signal output, α the order of the derivative, τ0 and τ 0 {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0} are the known and unknown part of x0, respectively, ui = Kxi is feedback control and Ω ⊂ ℝn is a polytope convex of vertices w1, w2, . . . , wp. According to the Krein–Milman theorem, we suppose that τ 0 = j = 1 p α j w j {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0} = \sum\limits_{j = 1}^p {{\alpha _j}{w_j}} for some unknown coefficients α1 ≥ 0, . . . , αp ≥ 0 such that j = 1 p α j = 1 \sum\limits_{j = 1}^p {{\alpha _j} = 1} . In this paper, the fractional derivative is defined in the Grünwald–Letnikov sense. We investigate the characterisation of the set χ( τ 0 {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0} , ϵ) of all possible gain matrix K that makes the system insensitive to the unknown part τ 0 {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0} , which means χ ( τ 0 , ) = { K m × n / y i α j , j = 1 , , p , i 0 } \chi \left( {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } }_0}, \in } \right) = \left\{ {K \in {\mathbb{R}^{m \times n}}/\left\| {{{\partial {y_i}} \over {\partial {\alpha _j}}}} \right\| \le \in ,\forall j = 1, \ldots ,p,\,\forall i \ge 0} \right\} , where the inequality y i α j \left\| {{{\partial {y_i}} \over {\partial {\alpha _j}}}} \right\| \le \in showing the sensitivity of yi relatively to uncertainties { α j } j = 1 p \left\{ {{\alpha _j}} \right\}_{j = 1}^p will not achieve the specified threshold ϵ > 0. We establish, under certain hypothesis, the finite determination of χ( τ 0 {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0} , ϵ) and we propose an algorithmic approach to made explicit characterisation of such set.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Reference38 articles.

1. 1. Abdelhak A., M. Rachik M. (2019), Model reduction problem of linear discrete systems: Admissibles initial states, Archives of Control Sciences, volume 29(LXV), no. 1, pages 41-55, 2019.

2. 2. Abdelilah LarracheL., Mustapha LhousL., Soukaina Ben B.RhilaR., Mostafa Rachik R. Abdessamad TridaneT. (2020), An output sensitivity problem for a class of linear distributed systems with uncertain initial state, Archives of Control Sciences, volume 30(LXVI), no. 1, pages 139-155, 2020.

3. 3. Amine El Bhih.B., Youssef BenfatahB., Mostafa RachikR. (2020), Exact determination of maximal output admissible set for a class of semilinear discrete systems, Archives of Control Sciences, ACS volume 30(LXVI), no. 3, pages 523-552, 10.24425/acs.2020.134676, 2020.

4. 4. Andrzej Dzielinski A., and Dominik Sierociuk D. (2008), Stability of Discrete Fractional Order State-space Systems. Journal of Vibration and Control, 14: 1543, 2008.

5. 5. Arild Thomson A. (2007), International journal of systems science, Identifiability of dynamic systems, volume 9, pages 813-825, Issue 2007.10.1080/00207727808941738

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal control for a discrete time epidemic model with zones evolution;Communications in Mathematical Biology and Neuroscience;2022

2. A discrete mathematical model SEIR with the evolution of the regions;Communications in Mathematical Biology and Neuroscience;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3