An Output Sensitivity Problem for a Class of Fractional Order Discrete-Time Linear Systems
Author:
Benfatah Youssef1ORCID, El Bhih Amine1ORCID, Rachik Mostafa1ORCID, Lafif Marouane1
Affiliation:
1. Faculty of Sciences Ben M’Sik, Department of Mathematics and Computer Science , Hassan II University , Casablanca, Sidi Othman BP 7955 , Morocco
Abstract
Abstract
Consider the linear discrete-time fractional order systems with uncertainty on the initial state
{
Δ
α
x
i
+
1
=
A
x
i
+
B
u
i
,
i
≥
0
x
0
=
τ
0
+
τ
⌢
0
∈
ℝ
n
,
τ
⌢
0
∈
Ω
,
y
i
=
C
x
i
,
i
≥
0
\left\{ {\matrix{{{\Delta ^\alpha }{x_{i + 1}} = A{x_i} + B{u_i},} \hfill & {i \ge 0} \hfill \cr {{x_0} = {\tau _0} + {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } }_0} \in {\mathbb{R}^n},} \hfill & {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } }_0} \in \Omega ,} \hfill \cr {{y_i} = C{x_{i,}}\,\,\,i \ge 0} \hfill & {} \hfill \cr } } \right.
where A, B and C are appropriate matrices, x0 is the initial state, yi is the signal output, α the order of the derivative, τ0 and
τ
⌢
0
{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0}
are the known and unknown part of x0, respectively, ui = Kxi is feedback control and Ω ⊂ ℝn is a polytope convex of vertices w1, w2, . . . , wp. According to the Krein–Milman theorem, we suppose that
τ
⌢
0
=
∑
j
=
1
p
α
j
w
j
{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0} = \sum\limits_{j = 1}^p {{\alpha _j}{w_j}}
for some unknown coefficients α1 ≥ 0, . . . , αp ≥ 0 such that
∑
j
=
1
p
α
j
=
1
\sum\limits_{j = 1}^p {{\alpha _j} = 1}
. In this paper, the fractional derivative is defined in the Grünwald–Letnikov sense. We investigate the characterisation of the set χ(
τ
⌢
0
{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0}
, ϵ) of all possible gain matrix K that makes the system insensitive to the unknown part
τ
⌢
0
{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0}
, which means
χ
(
τ
⌢
0
,
∈
)
=
{
K
∈
ℝ
m
×
n
/
‖
∂
y
i
∂
α
j
‖
≤
∈
,
∀
j
=
1
,
…
,
p
,
∀
i
≥
0
}
\chi \left( {{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } }_0}, \in } \right) = \left\{ {K \in {\mathbb{R}^{m \times n}}/\left\| {{{\partial {y_i}} \over {\partial {\alpha _j}}}} \right\| \le \in ,\forall j = 1, \ldots ,p,\,\forall i \ge 0} \right\}
, where the inequality
‖
∂
y
i
∂
α
j
‖
≤
∈
\left\| {{{\partial {y_i}} \over {\partial {\alpha _j}}}} \right\| \le \in
showing the sensitivity of yi relatively to uncertainties
{
α
j
}
j
=
1
p
\left\{ {{\alpha _j}} \right\}_{j = 1}^p
will not achieve the specified threshold ϵ > 0. We establish, under certain hypothesis, the finite determination of χ(
τ
⌢
0
{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \tau } _0}
, ϵ) and we propose an algorithmic approach to made explicit characterisation of such set.
Publisher
Walter de Gruyter GmbH
Subject
Mechanical Engineering,Control and Systems Engineering
Reference38 articles.
1. 1. Abdelhak A., M. Rachik M. (2019), Model reduction problem of linear discrete systems: Admissibles initial states, Archives of Control Sciences, volume 29(LXV), no. 1, pages 41-55, 2019. 2. 2. Abdelilah LarracheL., Mustapha LhousL., Soukaina Ben B.RhilaR., Mostafa Rachik R. Abdessamad TridaneT. (2020), An output sensitivity problem for a class of linear distributed systems with uncertain initial state, Archives of Control Sciences, volume 30(LXVI), no. 1, pages 139-155, 2020. 3. 3. Amine El Bhih.B., Youssef BenfatahB., Mostafa RachikR. (2020), Exact determination of maximal output admissible set for a class of semilinear discrete systems, Archives of Control Sciences, ACS volume 30(LXVI), no. 3, pages 523-552, 10.24425/acs.2020.134676, 2020. 4. 4. Andrzej Dzielinski A., and Dominik Sierociuk D. (2008), Stability of Discrete Fractional Order State-space Systems. Journal of Vibration and Control, 14: 1543, 2008. 5. 5. Arild Thomson A. (2007), International journal of systems science, Identifiability of dynamic systems, volume 9, pages 813-825, Issue 2007.10.1080/00207727808941738
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|