Spam Review Classification Using Ensemble of Global and Local Feature Selectors

Author:

Ansari Gunjan1,Ahmad Tanvir2,Doja Mohammad Najmud2

Affiliation:

1. JSS Academy of Technical Education , C-20/1, NOIDA - 201301 , India

2. Jamia Millia Islamia, Jamia Nagar, New Delhi - 110025 , India

Abstract

Abstract In our work, we propose an ensemble of local and global filter-based feature selection method to reduce the high dimensionality of feature space and increase accuracy of spam review classification. These selected features are then used for training various classifiers for spam detection. Experimental results with four classifiers on two available datasets of hotel reviews show that the proposed feature selector improves the performance of spam classification in terms of well-known performance metrics such as AUC score.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference29 articles.

1. 1. Banerjee, S., A. Y. K. Chua. Applauses in Hotel Reviews: Genuine or Deceptive? – In: Science and Information Conference (SAI), London, IEEE, 2014.10.1109/SAI.2014.6918299

2. 2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

3. 3. Crawford, M., H. Al Najada. Survey of Review Spam Detection Using Machine Learning Techniques. – Springer, Journal of Big Data, Vol. 2, 2015, No 1, p. 23.10.1186/s40537-015-0029-9

4. 4. Crawford, M., T. M. Khoshgoftaar, J. D. Prusa. Reducing Feature Set Explosion to Facilitate Real-World Review Spam Detection. – In: Proc. of 29th International Florida Artificial Intelligence Research Society Conference, AAAI, 2016, pp. 304-309.

5. 5. Fei, G., A. Mukherjee, B. Lui, M. Hsu, M. Castellenos, R. Ghosh. Exploiting Burstiness in Reviews for Review Spammer Detection. – In: Proc. of 7th International Conference on Weblogs and Social Media, AAAI, 2013. pp.175-184.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3