A Novel Joint Transmitting and Receiving Antenna Selection for Spatial Multiplexing Systems

Author:

Zhuang Mingjie1,Li Haitao1,Lin Yisong2

Affiliation:

1. College of Engineering , Huaqiao University , Quanzhou , Fujian , China

2. School of Information Science and Engineering , Huaqiao University , Xiamen , China

Abstract

Abstract How to reduce the hardware cost and high power consumption of RF link of communication device is the key problem to be solved for multi-transmitting antenna and multi-receiving antenna system (MIMO). Always choose the best antennas connection a limited number of RF circuits, which is called antenna selection technology (AS), are a perfect solution to the problem, Assuming that the spatial range of the antenna meets the requirements of signal multiplexing and based on the maximum capacity criterion of the selected MIMO system, the manuscript proposes a low computational complexity (CC) and high performance joint transmitting and receiving antenna selection technique (JTRAS). Starting from the traditional capacity formula and the full matrix of MIMO channel, we utilize a simplified channel capacity expression through repeatedly iterating to delete a row and a column of the equivalent decrement channel matrix, which is to remove a pair of transmitting and receiving antennas. Based on the decreasing JTRAS (DJTRAS) algorithm, the capacity results of simulating calculation indicate that its median capacity overtakes other ones, such as optimum selection (OS), AS based on Frobenius 2 norm (NBS), and concise joint AS criterion (CJAS) etc., and the novel DJTRAS scheme can significantly reduce computational complexity (CC) compared to the exhaustive search method with maximum capacity, which defined as optimal algorithm in the curve graphs. This new technology of the AS is particularly suited to large number of selected antennas, such as Lt ≥ NT /2,Lr ≥ NR /2.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3