Design of automatic tobacco trash detection system based on quadratic fuzzy theory

Author:

Jin Zhenxun1,Wang Wei1,Wang Youli1,Wang Gang1,Zhang Qiang1

Affiliation:

1. 1 China Tobacco Zhejiang Industrial Co., Ltd , Hangzhou , Zhejiang , , China .

Abstract

Abstract Fuzzy sets and deep learning models have accurate recognition accuracy in automatic detection. To be able to accurately identify tobacco debris and improve the quality of cigarettes, this paper proposes the design of a tobacco debris detection system with a deep learning model and fuzzy quadratic theory. The collected data is stored to AL422B by quadratic fuzzy set timing conversion, the cached image data is read by the microcontroller, the image pixel points are output, and the external controller and internal registers are set to read the tobacco image. The integrated Thumb extended instruction set to obtain the CPU clock frequency makes the controller interrupt and ensures PWM output. Integrate the internal fixed oscillator and external integrated control circuit to debug the program interface circuit to prevent power on and off misoperation. The negative log-likelihood function is obtained by following the activation rules given by the visible layer and hidden layer activation functions. The RBM is trained by quadratic fuzzy set estimation to optimize the parameters; test sample sets appear overfitting, combined with DBN pre-training and fine-tuning, iterative output, and labeling target data to meet the preset requirements to achieve intelligent detection of tobacco debris. The result analysis shows that the deep learning model and the quadratic fuzzy set generalization ability and accuracy are high, the highest F-value in tobacco clutter detection reaches 100%, and the system is designed to detect tobacco clutter automatically with high accuracy and good detection of clutter.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3