Design of software-defined network experimental teaching scheme based on virtualised Environment

Author:

He Heng12,Song Yazhou12,Xiao Tianzhe3,Ur Rehman Haseeb3,Nie Lei12

Affiliation:

1. School of Computer Science and Technology , Wuhan University of Science and Technology , Wuhan , China

2. Hubei Province Key Laboratory of Intelligent Information Processing and Real Time Industrial System , Wuhan University of Science and Technology , Wuhan , China

3. International School , Wuhan University of Science and Technology , Wuhan , China

Abstract

Abstract Aiming to address the shortage of experimental resources, the high cost of large-scale deployment of hardware experimental environment and the difficulty for students to get started in the software-defined network (SDN) course, this article proposes an SDN experimental teaching scheme based on the virtualised environment, and gives a specific experimental scheme design. The scheme utilises virtualisation technology to build a SDN experimental environment quickly, uses a lightweight network simulation platform – that goes by the name of Mininet – to build the SDN network and uses open-source controller Floodlight for centralised control of the SDN network. The scheme is mainly divided into three phases: basic, improvement and synthesis. In the basic phase, experimental projects mainly include the study of SDN basic concepts and the use of relevant tools; in the improvement phase, experimental projects mainly include the use of SDN flow table, group table, etc; in the synthetic phase, we design two innovative experimental projects that use computational intelligence technology to achieve efficient load balancing and accurate malicious attack detection. The difficulty of each phase is increasing. The constantly evolving levels of difficulty allow the individual needs of students with different levels to be met, thereby improving the effect of SDN experimental teaching and cultivating innovative SDN talents.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3