Deep neural networks for multimodal perception and human-computer interaction technology in art design

Author:

Zhang Yamin1

Affiliation:

1. 1 Henan Economic and Trade Vocational College , Zhengzhou, Henan, 454500 , China .

Abstract

Abstract The first part of this paper examines the aesthetic and application advantages of art design using human-computer interaction technology and develops a multimodal perceptual human-computer interaction system for art design. Multimodal data is obtained using multi-scale convolutional kernels for acoustic feature extraction and deep convolutional neural networks for multiple interaction image feature fusion. Finally, a test analysis is conducted to verify the system's effectiveness in this paper. According to the results, the system has an average wake-up success rate of 99.51% and a wake-up response time of 0.3665 seconds. Implementing human-computer interaction technology and deep neural networks in art design is effective and promotes the development of art design.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3