Detection of pig based on improved RESNET model in natural scene

Author:

Song Weixian1,Fang Junlong1,Wang Runtao1,Tan Kezhu1

Affiliation:

1. College of Electrical and Information , Northeast Agricultural University , Harbin , China

Abstract

Abstract The behaviours of the pig are often closely related to their health. Pig recognition is very important for pig behaviour analysis and digital breeding. Currently, the early signs and abnormal behaviours of sick pigs in breeding farms are mainly completed by human observation. However, visual inspection is labour intensive and time-consuming, and it suffers from the problems of individual experiences and varying environments. An improved ResNet model was proposed and applied to detect individual pigs in this study based on deep learning knowledge. The developed model captured the features of pigs applying across layer connections, and the ability of feature expression was improved by adding a new residual module. The number of layers was reduced to minimise the net complexity. Generally, the ResNet frame was developed by reducing the number of convolution layers, constructing different types of the residual module and adding the number of convolution kernels. The training accuracy and testing accuracy reached 98.2% and 96.4%, respectively, when using the improved model. The experiment results showed that the method proposed in this paper for checking living situations and disease prevention of commercial pigs in pig farms is potential.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3