Research Progress of Weld Tracking Image Processing Technology Based on Deep Learning Theory

Author:

Shen Zilei1,Du Yongqiang1

Affiliation:

1. 1 School of Information Engineering , Xinyang Agriculture and Forestry College , Xinyang , Henan , , China .

Abstract

Abstract In this paper, a convolutional neural network is used to localize the weld seam feature points with noise interference in complex welding environments. A priori frames are introduced into the feature point extraction network, combined with position prediction and confidence prediction, to improve the accuracy and anti-interference ability of the weld tracking system. To improve welding efficiency by utilizing the continuity of weld tracking, the weld tracking network is designed based on the twin structure. The weld detection network designs the first frame to locate the key position of the bevel and inputs into the weld tracking network as a template, and the weld tracking network completes the automatic tracking of the subsequent welds. At the same time, the network introduces a hybrid domain attention mechanism, which makes full use of the weld feature channel dependence and spatial location relationship and puts more attention near the inflection point of the weld laser line to ensure the accuracy of weld tracking. The research results show that the extraction error of weld seam feature points based on the convolutional neural network is within 17, which is much lower than that of the grayscale center of gravity method and Steger's algorithm. In the weld tracking experiments under the workpiece tilting state, the average value of the absolute error of the tracking trajectory in the X-axis direction is not more than 0.7 mm, and the maximum value is less than 1.15 mm. The absolute tracking error in the Z-axis direction is relatively low, with an average of 0.638 mm and a maximum of 1.573 mm. Therefore, the weld-tracking image processing technique proposed in this paper has strong anti-noise interference capabilities and high localization accuracy. And high accuracy in localization.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3