Research on the construction of enterprise financial management information based on feature set

Author:

Jin Yingying1

Affiliation:

1. 1 School of Accountancy , Henan Finance University , Zhengzhou , Henan , , China .

Abstract

Abstract This study suggests a PSO-SVM financial crisis early warning model aid organizations in developing an efficient financial crisis early warning model for early financial crisis avoidance. For feature set selection, a wrapper method is utilized, in which the classifier’s learning algorithm and feature set selection are combined. The SVM is utilized as the classifier, and its feature set and kernel function parameters (C and δ 2) are employed as the placements of the particles in the PSO, with the SVM’s classification results being used as the adaption values. By achieving the near-optimal feature subset and kernel function parameters, the results are close to the model’s ideal predictions. The PSO technique is used to concurrently optimize the feature set and the kernel function parameters to remove unnecessary or redundant features. According to the findings of the model comparison, the SVM’s accuracy is 80.31%, which is less than the accuracy of the PSO-SVM model, which is 94.55%. The accuracy and recall of the PSO-SVM training set are 71.39% and 81.87%, respectively, while the accuracy and recall of the test set are both 70.53% and 72.29%, respectively. In comparison, the SVM model’s test set accuracy rate is just 34.57%, while its training set accuracy rate is only 44.01%. This suggests that the PSO-SVM model put forward in this research has seen significant improvements in both the accuracy of indicator selection and indicator interpretability.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3