Realization of Book Collaborative Filtering Personalized Recommendation System Based on Linear Regression Equation

Author:

Gao Yaqi1,Yousif Mohammed2

Affiliation:

1. Beijing International Studies University Library , Beijing , , China

2. College of Administrative Sciences , Applied Science University , Bahrain

Abstract

Abstract In the context of information construction, faced with a large number of network information data, in order to obtain more valuable information in an effective time, researchers put forward a recommendation algorithm for information explosion. Because the recommendation algorithm has been successfully applied in many fields such as business, the relevant algorithm system has also begun to be fully implemented in the field of books. There are many kinds of recommendation algorithms, among which collaborative filtering recommendation technology is the most widely used. Therefore, based on the humanized library service concept, this paper mainly studies the influencing factors of reader satisfaction, and on the basis of constructing multiple linear regression model, clarifies the practical significance of constructing collaborative filtering personalized recommendation system for libraries. Then, an improved clustering algorithm is proposed to reduce the dimensionality of the original matrix, and an empirical analysis is made on the book collaborative filtering personalized recommendation system based on linear regression equation by using the operation idea of calculating the score according to the borrowing time. The final results show that, according to the multiple linear regression model between reader satisfaction and its influencing factors, in order to improve library service quality and build a good learning and reading environment, collaborative filtering algorithm should be combined to build a personalized book recommendation system, and this system is feasible in practical application..

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3