Research on structural damage identification and localization based on artificial neural network

Author:

Liu Yuhang1

Affiliation:

1. 1 Civil Engineering College , Chongqing University , Chongqing , , China .

Abstract

Abstract Structural health monitoring is a research hotspot in engineering, and structural damage identification is one of the key problems in structural health monitoring research. This paper proposes a study on structural damage identification and localization based on artificial neural networks, and for the problem that the learning convergence speed of the BP neural network is too slow, a genetic algorithm is used to optimize the update of weights and thresholds during training and learning. In the finite element simulation, the structure’s primary and secondary damage are taken as input nodes, and the optimized GA-BP neural network is used for training and identification. For the localization recognition of the primary damage of the structure, the maximum recognition relative errors of both the BP neural network and the GA-BP neural network did not exceed 5%, but the latter’s accuracy was 2.63% higher than that of the former. For the localization recognition of secondary damage, the GA-BP neural network can effectively recognize 90% of the samples. The artificial neural network-based structural damage recognition localization has high recognition efficiency and accuracy, which is conducive to improving the robustness of the structural damage recognition system and is of significant help to real-time structural health monitoring.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3