A statistical method for massive data based on partial least squares algorithm

Author:

Xu Yan1

Affiliation:

1. Science College , Heilongjiang Bayi Agricultural University , Daqing , Heilongjiang , , China

Abstract

Abstract Partial least squares are the most widely used identification algorithm, but the algorithm cannot achieve real-time performance for massive data. To solve this application contradiction, a parallel computing strategy based on NVIDIA CU-DA architecture is proposed to implement the partial least squares algorithm using a graphics processor (GPU) with massively parallel computing features as the computing device and combining the advantages of GPU memory. Research and analysis found that the partial least squares algorithm implemented using CUDA on GPU is 48 times faster than the implementation of the CPU. Therefore, the algorithm has good usability and higher application value, which makes it possible to apply the partial least squares algorithm to massive data statistics.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Reference22 articles.

1. Ren, H., Zou, C., & Li, R. (2022). Extrapolation-based Tuning Parameters Selection in Massive Data Analysis. SCIENTIA SINICA Mathematica, 52(6), 689-.

2. Murtagh, F. (2017). Massive Data Clustering in Moderate Dimensions from the Dual Spaces of Observation and Attribute Data Clouds.

3. Zhu, R. (2015). Poisson Subsampling Algorithms for Large Sample Linear Regression in Massive Data. Stats.

4. Pan, R., Zhu, Y., Guo, B., et al. (2021). A Sequential Addressing Subsampling Method for Massive Data Analysis under Memory Constraint. arXiv e-prints.

5. Zhao, Y. (2018). Feasible Algorithm for Linear Mixed Model for Massive Data. Communications in Statistics, B. Simulation and Computation.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3